Groundwater Impacts of Stormwater Infiltration: Considerations for Low Impact Development

AWRA Annual Conference
Philadelphia, PA
November 1 – 4, 2010

Dan O’Rourke, PG
Matt Gamache, PE
Mark Maimone, Ph.D, PE, D.WRE
Kristina Masterson, PE
Scott Coffey, LHG
Presentation Overview

- Groundwater modeling applications to green, or low impact development design

- Philadelphia’s “Green Streets” Program
 - Hydraulic influences – groundwater mounding and potential for basement flooding
 - 12th Street Infiltration Trench System

- Washington State Infiltration Trench
 - Water quality – infiltration trench upgradient of community public supply wells

- Future Considerations
Philadelphia “Green Streets” Project

- Site-scale and regional models developed

- DYNFLOW (www.dynsystem.com)
 - Fully 3D, finite element groundwater flow model
 - Used on over 300 projects worldwide
 - Vetted by the International Groundwater Modeling Center
 - GIS compatible
Site Specific Applications

- Initial evaluations considered “box model” with fixed hydraulic conductivities

- Simplified approach
 - Single K
 - Fixed gradient
Site-Scale Model Results

Precipitation

- $K_v = 1 \text{ ft/d}$
- $K_h = 5 \text{ ft/d}$
- $K_h = 10 \text{ ft/d}$
- $K_h = 20 \text{ ft/d}$
- $K_h = 50 \text{ ft/d}$
Site-Scale Model Results

- Mounding from the trenches is a localized impact
- Appears to be some local permanent groundwater mounding due to the frequency of storms in Philadelphia
- However, box models not representative of actual hydrogeologic conditions...
Model Stratigraphy and Hydrogeologic Framework

- Includes both Coastal Plain & Piedmont physiographic provinces
- Divided by Fall Line
- Two very different hydrogeologic environments
- Stratigraphy from cross-sections in USGS reports
Cross-Section through Coastal Plain

- Layers of permeable aquifer units
- Overlays bedrock
Cross-Section through Piedmont

- Sand layer overlaying bedrock
- Transmissivity is limited

Cross-Section Location
General flow consistent with published maps
12th Street Infiltration Design
Incorporate Regional Model

- Create sub-regional model utilizing regional model stratigraphy and boundary conditions
Stratigraphic Framework
Simulate trenches using finite elements
Create Model Input – Recharge File

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infiltration Rate Time Series for PWD Groundwater Model</td>
<td></td>
</tr>
</tbody>
</table>

Green Infrastructure Input Data

Required Trench Volume (ft³)	632.5
Impermeable area served (ft²)	7590
Vertical Hydraulic Conductivity (ft/d)	1

Infiltration Area (ft²)	534.507
Trench Depth (ft)	3.5
Infiltration Amount (ft³/time step)	5.568
Porosity	0.4

Trench System 1

<table>
<thead>
<tr>
<th>Actual Date & Time (hours)</th>
<th>Input: Rainfall during time step (inches)</th>
<th>Rainfall Volume in time step (ft³)</th>
<th>Potential Volume in trench (ft³)</th>
<th>Actual Volume in trench (ft³)</th>
<th>Model Input: Actual Infiltration Amount (ft³/time step)</th>
<th>Spill-Over (ft³)</th>
<th>T1a (ft³/time step)</th>
<th>T1b (ft³/time step)</th>
<th>T1c (ft³/time step)</th>
<th>T1d (ft³/time step)</th>
<th>T1e (ft³/time step)</th>
<th>T1f (ft³/time step)</th>
<th>T1g (ft³/time step)</th>
<th>T1h (ft³/time step)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/14/2005 9:00</td>
<td>0.05</td>
<td>31.63</td>
<td>644.49</td>
<td>644.49</td>
<td>5.568</td>
<td>0.000</td>
<td>1.0388</td>
<td>0.2078</td>
<td>0.9141</td>
<td>0.9557</td>
<td>0.2909</td>
<td>0.2909</td>
<td>0.3324</td>
<td>0.3740</td>
</tr>
<tr>
<td>1/14/2005 9:15</td>
<td>0.069</td>
<td>43.64</td>
<td>682.57</td>
<td>682.57</td>
<td>5.568</td>
<td>0.000</td>
<td>1.0388</td>
<td>0.2078</td>
<td>0.9141</td>
<td>0.9557</td>
<td>0.2909</td>
<td>0.2909</td>
<td>0.3324</td>
<td>0.3740</td>
</tr>
<tr>
<td>1/14/2005 9:30</td>
<td>0.03</td>
<td>18.98</td>
<td>695.97</td>
<td>695.97</td>
<td>5.568</td>
<td>0.000</td>
<td>1.0388</td>
<td>0.2078</td>
<td>0.9141</td>
<td>0.9557</td>
<td>0.2909</td>
<td>0.2909</td>
<td>0.3324</td>
<td>0.3740</td>
</tr>
<tr>
<td>1/14/2005 9:45</td>
<td>0.02</td>
<td>12.65</td>
<td>703.05</td>
<td>703.05</td>
<td>5.568</td>
<td>0.000</td>
<td>1.0388</td>
<td>0.2078</td>
<td>0.9141</td>
<td>0.9557</td>
<td>0.2909</td>
<td>0.2909</td>
<td>0.3324</td>
<td>0.3740</td>
</tr>
<tr>
<td>1/14/2005 10:00</td>
<td>0.03</td>
<td>19.82</td>
<td>716.46</td>
<td>716.46</td>
<td>5.568</td>
<td>0.000</td>
<td>1.0388</td>
<td>0.2078</td>
<td>0.9141</td>
<td>0.9557</td>
<td>0.2909</td>
<td>0.2909</td>
<td>0.3324</td>
<td>0.3740</td>
</tr>
<tr>
<td>1/14/2005 10:15</td>
<td>0.04</td>
<td>25.30</td>
<td>736.19</td>
<td>736.19</td>
<td>5.568</td>
<td>0.000</td>
<td>1.0388</td>
<td>0.2078</td>
<td>0.9141</td>
<td>0.9557</td>
<td>0.2909</td>
<td>0.2909</td>
<td>0.3324</td>
<td>0.3740</td>
</tr>
<tr>
<td>1/14/2005 10:30</td>
<td>0.06</td>
<td>37.95</td>
<td>748.31</td>
<td>748.31</td>
<td>5.568</td>
<td>0.000</td>
<td>1.0388</td>
<td>0.2078</td>
<td>0.9141</td>
<td>0.9557</td>
<td>0.2909</td>
<td>0.2909</td>
<td>0.3324</td>
<td>0.3740</td>
</tr>
<tr>
<td>1/14/2005 10:45</td>
<td>0.06</td>
<td>37.95</td>
<td>748.31</td>
<td>748.31</td>
<td>5.568</td>
<td>0.000</td>
<td>1.0388</td>
<td>0.2078</td>
<td>0.9141</td>
<td>0.9557</td>
<td>0.2909</td>
<td>0.2909</td>
<td>0.3324</td>
<td>0.3740</td>
</tr>
<tr>
<td>1/14/2005 11:00</td>
<td>0.04</td>
<td>25.30</td>
<td>734.31</td>
<td>734.31</td>
<td>5.568</td>
<td>0.000</td>
<td>1.0388</td>
<td>0.2078</td>
<td>0.9141</td>
<td>0.9557</td>
<td>0.2909</td>
<td>0.2909</td>
<td>0.3324</td>
<td>0.3740</td>
</tr>
<tr>
<td>1/14/2005 11:15</td>
<td>0.04</td>
<td>25.30</td>
<td>734.31</td>
<td>734.31</td>
<td>5.568</td>
<td>0.000</td>
<td>1.0388</td>
<td>0.2078</td>
<td>0.9141</td>
<td>0.9557</td>
<td>0.2909</td>
<td>0.2909</td>
<td>0.3324</td>
<td>0.3740</td>
</tr>
<tr>
<td>1/14/2005 11:30</td>
<td>0.02</td>
<td>12.65</td>
<td>701.15</td>
<td>701.15</td>
<td>5.568</td>
<td>0.000</td>
<td>1.0388</td>
<td>0.2078</td>
<td>0.9141</td>
<td>0.9557</td>
<td>0.2909</td>
<td>0.2909</td>
<td>0.3324</td>
<td>0.3740</td>
</tr>
<tr>
<td>1/14/2005 11:45</td>
<td>0.02</td>
<td>12.65</td>
<td>701.15</td>
<td>701.15</td>
<td>5.568</td>
<td>0.000</td>
<td>1.0388</td>
<td>0.2078</td>
<td>0.9141</td>
<td>0.9557</td>
<td>0.2909</td>
<td>0.2909</td>
<td>0.3324</td>
<td>0.3740</td>
</tr>
<tr>
<td>1/14/2005 12:00</td>
<td>0.02</td>
<td>12.65</td>
<td>701.15</td>
<td>701.15</td>
<td>5.568</td>
<td>0.000</td>
<td>1.0388</td>
<td>0.2078</td>
<td>0.9141</td>
<td>0.9557</td>
<td>0.2909</td>
<td>0.2909</td>
<td>0.3324</td>
<td>0.3740</td>
</tr>
<tr>
<td>1/14/2005 12:15</td>
<td>0.03</td>
<td>18.98</td>
<td>716.46</td>
<td>716.46</td>
<td>5.568</td>
<td>0.000</td>
<td>1.0388</td>
<td>0.2078</td>
<td>0.9141</td>
<td>0.9557</td>
<td>0.2909</td>
<td>0.2909</td>
<td>0.3324</td>
<td>0.3740</td>
</tr>
<tr>
<td>1/14/2005 12:30</td>
<td>0.02</td>
<td>12.65</td>
<td>701.15</td>
<td>701.15</td>
<td>5.568</td>
<td>0.000</td>
<td>1.0388</td>
<td>0.2078</td>
<td>0.9141</td>
<td>0.9557</td>
<td>0.2909</td>
<td>0.2909</td>
<td>0.3324</td>
<td>0.3740</td>
</tr>
<tr>
<td>1/14/2005 12:45</td>
<td>0.00</td>
<td>0.00</td>
<td>743.74</td>
<td>743.74</td>
<td>5.568</td>
<td>0.000</td>
<td>1.0388</td>
<td>0.2078</td>
<td>0.9141</td>
<td>0.9557</td>
<td>0.2909</td>
<td>0.2909</td>
<td>0.3324</td>
<td>0.3740</td>
</tr>
<tr>
<td>1/14/2005 13:00</td>
<td>0.00</td>
<td>0.00</td>
<td>737.17</td>
<td>737.17</td>
<td>5.568</td>
<td>0.000</td>
<td>1.0388</td>
<td>0.2078</td>
<td>0.9141</td>
<td>0.9557</td>
<td>0.2909</td>
<td>0.2909</td>
<td>0.3324</td>
<td>0.3740</td>
</tr>
<tr>
<td>1/14/2005 13:15</td>
<td>0.00</td>
<td>0.00</td>
<td>731.61</td>
<td>731.61</td>
<td>5.568</td>
<td>0.000</td>
<td>1.0388</td>
<td>0.2078</td>
<td>0.9141</td>
<td>0.9557</td>
<td>0.2909</td>
<td>0.2909</td>
<td>0.3324</td>
<td>0.3740</td>
</tr>
<tr>
<td>1/14/2005 13:30</td>
<td>0.00</td>
<td>0.00</td>
<td>726.04</td>
<td>726.04</td>
<td>5.568</td>
<td>0.000</td>
<td>1.0388</td>
<td>0.2078</td>
<td>0.9141</td>
<td>0.9557</td>
<td>0.2909</td>
<td>0.2909</td>
<td>0.3324</td>
<td>0.3740</td>
</tr>
<tr>
<td>1/14/2005 13:45</td>
<td>0.00</td>
<td>0.00</td>
<td>720.47</td>
<td>720.47</td>
<td>5.568</td>
<td>0.000</td>
<td>1.0388</td>
<td>0.2078</td>
<td>0.9141</td>
<td>0.9557</td>
<td>0.2909</td>
<td>0.2909</td>
<td>0.3324</td>
<td>0.3740</td>
</tr>
</tbody>
</table>
Hydraulic Impacts

- Site specific
Cross-Section through Piedmont

- Sand layer overlaying bedrock
- Transmissivity is limited
- Mounding may be more problematic
Hydraulic Impacts

- Site specific

- Need more detailed information on stratigraphic framework, groundwater head and pumpage throughout Philadelphia

- Model results indicate that mounding not a major issue, in general, but need to be careful how basins are designed as mounding overlap may be an issue locally
Storm Water Infiltration – Groundwater Quality Considerations

- Case Study – Washington State
- Infiltration trench used for stormwater capture
- Sand and gravel aquifer ($K_h = 200 – 500 \frac{f}{d}$)
- Inflow rates as high as 10 CFS
- Water supply well 600 feet away
- Concerns about downgradient water quality impacts
 - Particularly pathogens
- Groundwater modeling to evaluate mounding and travel time to supply well
Site Conditions

- MW-2: 30 Feet From Trench
- MW-5: 120 Feet From Trench

Infiltration Trench

Water Table Before and After Infiltration
Model Simulation Results - Mounding

Model Grid

Simulated Head Rise After 7 Days
Model Simulation Results - Transport

- Travel time to closest supply well 1-2 months
- Supply well pumps infrequently
Water Quality Impacts

Infiltration Trench

Monitoring Well (30’ from Trench)
Future Goals

◆ Parties agreed to:
 ◦ Reduce trench inflows
 ◦ Maintain sufficient unsaturated zone thickness
 ◦ Monitor groundwater quality

◆ Goals
 ◦ Control of pathogens
 ◦ Sustainable groundwater resource
How the Groundwater Model Helped

- Gain better understanding of the trench/aquifer relationship
- Characterize the vulnerability of receptors
- Guide the design of an effective monitoring program
Future Considerations

- Implementation of stormwater BMP will continue to grow over the coming decades

- Care must be taken on a site-by-site basis to ensure that groundwater sustainability is considered

- Groundwater investigations may be vital to the successful implementation of such a project
 - Geologic borings
 - Long term water level monitoring
Thank You

Questions?

Contact Info

- Dan O’Rourke
- orourkede@cdm.com
- www.cdm.com
- www.dynsystem.com